RO | EN

Engineering Tomorrow - INAS x UPT

INAS  deschide din nou înscrierile în cadrul proiectului Engineering Tomorrow care presupune două sesiuni anuale, oferind studenților oportunitatea de a se pregăti pentru o carieră de succes în inginerie. Prima sesiune din acest an este dedicată Universității Politehnica Timișoara X Continental, iar studenții vor avea ocazia să învețe alături de ingineri profesioniști.

Sesiunile sunt concepute pentru a oferi studenților posibilitatea de a explora domenii remarcabile precum simularea virtuală în Ansys Mechanical, CFD și Electronics. Cursurile vor avea loc între 5 și 30 mai , iar profesorii UPT, alături de trainerii INAS, vor ghida participanții prin sesiuni interactive, combinând expertiza academică cu experiența practică pentru a le oferi studenților o pregătire deosebită.

Engineering Tomorrow este susținut cu mândrie de Centrul de Excelență în Design și Simulare "Radu Țîrcomnicu", care joacă un rol esențial în asigurarea unui cadru de învățare avansat și de calitate pentru toți participanții.

Ansys CFD

Introducerea în ANSYS și Interfața Utilizatorului, Modelarea Geometrică pentru Aplicații cu Fluide, Generarea de Mesh-uri pentru Analize cu Fluide, Definirea Proprietăților Materiale și de Frontieră pentru Analize cu Fluide, Soluționarea Analizelor cu Fluide, Interpretarea și Evaluarea Rezultatelor, Optimizare și Îmbunătățire în Contextul Aplicațiilor cu Fluide.

Agenda Ansys CFD 2024 R2 Course

Ansys Geometry

Day 1:

  • Ansys Geometry overview: General description of the Ansys Geometry interfaces (Design Modeler / Space Claim Direct Modeler),Sketching and 3D modeling techniques, Geometry simplification and
    repair, Working with design parameters
  • Workshop 1.1: Using sketches as base (objects for 3D operations)
  • Workshop 1.2: Slice operation, pattern (operation, mid-surface creation, analysis
    tools)
  • Workshop 1.3: Finding geometry imperfections using various tools and simplifying / repairing of an assembly
  • Workshop 1.4: Generation of a parameterized 3D model

Meshing

Day 2:

  • Meshing overview: Finite Element Method overview, Generating a mesh, Creating named selections
  • Workshop 2.1: Mesh generation using different methods, comparison between different meshing tools in Ansys

Meshing

Day 3:

  • Fluent meshing overview: Watertight geometry workflow WS 3.1: Mixer Meshing WS 3.2 :Arcjet

Ansys CFD

Day 4:

  • Ansys CFD overview: General description of Fluent 2024 R1 interface, Basics of CFD analysis, Pre & Postprocessing
  • Workshop 4.1: Fluid flow and heat transfer in a mixing tee

Ansys CFD

Day 5:

  • Fluent Workspace and Physics WS 5.1
  • Fluid flow distribution inside a manifold WS 5.2 - Fluid flow inside a duct with/without vanes

Ansys CFD

Day 6:

  • Fluent results tab overview WS 6.1: Flow over heated objects

Ansys CFD

Day 7:

  • Fluent Best Practice Guidelines WS 7.1: Transonic Flow Over a NACA 0012 Airfoil

Ansys CFD

Day 8:

  • Turbulence modelling WS 8.1: Turbulent Flow past a backward facing step

Ansys CFD

Day 9:

  • Conjugate heat transfer( simultaneous conduction in a solid part coupled ar walls to convection in the fluid), Natural convection of the heated air, Thermal radiation between surfaces; Workshop 6.1: Electronics cooling with natural convection and radiation

Ansys Mechanical

Introducerea în ANSYS și Interfața Utilizatorului, Modelare Geometrică, Crearea de Mesh-uri (Rețele de Elemente), Definirea Proprietăților Materiale și de Frontieră, Soluționarea Analizei, Evaluarea și Interpretarea Rezultatelor, Optimizare și Îmbunătățire

Agenda Ansys Mechanical 2024 R2 Course

Day 1:

Ansys Geometry:

Geometry interfaces (Design Modeler/SpaceClaim Direct Modeler). Sketching and 3D modeling, geometry simplification and repair. Working with parameters.

  • Workshop 1: Launch and explore SpaceClaim, Structure Tree, file operations
  • Workflow 2: Create a new geometry
  • Workflow 3: Modeling and assembly tools
  • Workflow 4: Repairing geometry
  • Workflow 5: Preparing for FEA, simplify, create/extract mid-surfaces and beams
  • Workflow 6: Creating and using parameters

Day 2:

Ansys Mechanical Overview:

  • Finite Element Method overview
  • Ansys Workbench overview
  • Ansys Mechanical overview: Basic analysis procedure, Ansys Mechanical Interface, Toolbars, Outline tree and details, Graphics window, Scoping loads and supports
  • Engineering Data and assigning material properties
  • Workflow 1: Mechanical Basics – end to end project

Day 3:

Ansys Mechanical Preprocessing:

Geometry, Contact, Coordinate Systems, Named Selections, Object Generator, Selection Information

  • Workshop 1: 2D analysis – Gear and Rack
  • Workflow 2: Named Selections
  • Workflow 3: Object Generator
  • Workflow 4: Using Named Selections and Object generator to minimize the setup time

Day 4:

Static Structural Analysis:

Basics of static structural analysis, geometry, material properties, connections, analysis settings, loads, supports, solution, results

  • Contact versus supports
  • Linear versus Nonlinear Solutions
  • Workflow 1: Linear Structural Analysis
  • Workflow 2: Beam Connections

Day 5:

Postprocessing, Validation, CAD and Parameters:

Postprocessing, Section Planes, Probe Tool, Charts, Scoping Results, Linearized Stress, Error estimation, Convergence, Stress singularities, CAD import, defining parameters in Workbench and using them in Parameter workspace

  • Workflow 1: Mesh Evaluation
  • Workflow 2: Parameter management

Day 6:

Meshing in Ansys Mechanical:

Global Mesh Controls, Local Mesh Controls, Virtual Topology, Direct Meshing, Mesh Quality Criteria

  • Workshop 1: Mesh Creation
  • Workflow 2: Mesh Control

Day 7:

Connections and Remote Boundary Conditions:

Contact, Spot welds, Mesh connections, Joints, Sprigs and Beams;

Remote Boundary Conditions, Remote Points, Behavior control, Pinball control, Display options;

  • Workshop 1: Contact Offset Control
  • Workflow 2: Joints
  • Workflow 3: Remote Boundary Conditions

Day 8:

Modal, Thermal and Multistep Analyses:

Theory and assumptions for modal analysis, modal geometry and material properties, modal contact, modal solution and results

  • Modal analysis with prestress

Thermal geometry and material properties, thermal contact, thermal boundary conditions, thermal solution and results

  • Multistep analysis, setup, controls, loads, postprocessing
  • Solution combinations
  • Workflow 1: Modal analysis of a frame
  • Workflow 2: Thermal analysis of a Pump Housing
  • Workflow 3: Multistep analysis

Day 9:

Submodeling and Cyclic Symmetry Analyses

  • Submodeling overview, submodeling procedure
  • Cyclic Symmetry overview, Cyclic Symmetry procedure
  • Workshop 1: Submodeling
  • Workshop 2: Modal Cyclic Symmetry of a Bevel Gear
   

Ansys Electronics

Introducerea și interfața ANSYS, modelarea geometrică, crearea mesh-urilor, definirea proprietăților materiale și de frontieră pentru analizele electronice, soluționarea analizelor, interpretarea rezultatelor și optimizarea în contextul aplicațiilor electronice.

Ansys Electronics Desktop 2024 R2 Course

Day 1:

  • Electromagnetic Simulation Calculation at a Distance: This lecture covers far-field calculations in HFSS using FEM, FE-BI, and
    SBR+ without meshing between objects;
  • W.S.1.1: This workshop shows how to design and simulate a conical spiral antenna using the HFSS Antenna Toolkit
  • W.S.1.2: This workshop covers dipole antenna simulation in HFSS,
    from setup to far-field result analysis.

Day 2:

  • W.S.2.1: Learn to simulate a horn antenna in HFSS using a prebuilt model, FE-BI setup, and advanced far-field visualization at 10 GHz;
  • W.S.2.2: Optimize source amplitudes in a 1×5 linear array to control sidelobes and beamwidth using AEDT and HFSS.

Day 3:

  • W.S.3.1: Use HFSS to apply and optimize a radiation mask, ensuring the antenna meets design constraints.

Day 4:

  • Eddy Current solver: Overview of the Eddy Current solver, highlighting the principles of operation and its applicability in analyzing eddy currents for various electromagnetic designs;
  • W.S.4.1: Eddy Current Analysis: This workshop explores the Eddy Current solver based on a simple example with a disk above a coil. ;

Day 5:

  • Intro: This lesson covers motor geometry creation using Maxwell RMxprt or User Defined Primitives (UDPs);
  • W.S.5.1: This workshop covere motor geometry creation using Maxwell RMxprt or User Defined Primitives (UDPs)

Day 6:

  • Mesh Operations for Rotating Machines: This session covers FEM meshing techniques, including initial mesh settings and clone mesh to leverage symmetry.;
  • W.S.6.1: Mesh Operations for Rotating Machines: In this workshop we will compare several different mesh operations applied on both 2D and 3D examples of rotating machines, showing the differences and pointing out the best choice depending on the analysis of interest .

Day 7:

  • Q3D Workflow: Intro to Q3D setup in AEDT, covering boundary
    conditions, nets, sources/sinks, solution setup, and result
    interpretation;;
  • W.S.7.1: Simulate parallel plate capacitance in Q3D using a provided model, with setup, run, and visualization at 2 GHz.

Day 8:

  • Q3D Capacitance Matrix Reduction: Learn how to simplify capacitance matrices in Q3D for efficient, accurate electrostatic
    simulations;
  • W.S.8.1: Apply series/parallel reduction in Q3D using MSbX to
    optimize capacitance matrices and analyze results.

Day 9:

  • Q3D Solvers and Solution Setup: Overview of CG, DC RL, and AC RL solvers in Q3D, highlighting their roles in frequency-dependent
    parameter extraction.
  • W.S.9.1: Set up and run a Q3D frequency sweep to analyze H-Bar busbar parasitics, with focus on sweep config and results.
  • W.S.9.2: Create and run a CG solution for THY bars in Q3D, including net detection, meshing, and capacitance analysis.

Certificate of Completion

La finalul sesiunilor, studenții vor primi Certificate of Completion sub rezerva îndeplinirii unor cerințe minime, respectiv o prezență de minim 80% și obținerea a cel puțin 80 de puncte la proiectul final.


Pe lângă acest certificat, ei vor beneficia și de o licență comercială ANSYS, valabilă timp de 6 luni, în momentul în care se angajează în domeniul simulării virtuale. De asemenea, această licență va fi implementată în companiile care nu au acces la ANSYS, oferind astfel studenților posibilitatea de a folosi această tehnologie avansată și de a-și dezvolta aptitudinile în domeniul ingineriei.

Parteneri

 

INAS        INAS        Linkedin INAS        YouTube INAS        Facebook